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THE  THEORY AND PRACTICE  OF  ESTIMATING  THE ACCURACY 

OF  DYNAMIC  FLIGHT-DETERMINED  COEFFICIENTS 

Richard E .  Maine and Kenneth W . Iliff 
Dryden  Flight  Research  Center 

INTRODUCTION 

Parameter  estimation is widely used to obtain  aircraft  stability  and  control  deriv- 
atives from dynamic flight  maneuvers.  Reference 1 describes  the  details of this 
application.  The  estimates are  used  during flight test  programs  to  permit  the  safe 
expansion of the  flight  envelope, to improve  the fidelity of simulators,  and to analyze 
the  effects of control  system  changes.  The  estimates  are  also compared with theore- 
tical  and wind tunnel  predictions to validate  and  improve  prediction  and  estimation 
techniques. 

Derivatives  obtained from any source  are  by  nature only  estimates  and not exact 
values,  a fact which is often  ignored. To make effective  use of these  estimates, i t  is 
necessary to have some gage of their  reliability,  whether  the gage is a  statistical 
measure or a  guess  based on intuition. If highly  accurate  estimates cannot  be distin- 
guished from worthless  estimates, to be  safe  all  estimates must be  treated  as  worth- 
less.  Therefore,  measures of estimate  accuracy  are  as  valuable  as  the  estimates 
themselves.  Nonetheless,  the  subject of measuring  estimate  reliability is seldom 
explored.  This  paper examines  the  use of the  various  measures of accuracy with 
flight  data. 

There  are  three  general  applications  for  measures of estimate  accuracy.  The 
first is planning  the  flight  tests  for  the  derivative estimation itself.  Predictions of 
estimate  accuracy  can  be  used to evaluate  proposed  maneuvers  and  instrumentation 
systems.  This  application is necessarily  limited,  because  it  involves  predicting 
accuracy  before  the  data  are  obtained.  The second  application is the comparison of 
derivative  estimates.  The  comparisons can  be between independent  flight  estimates 
or between flight  estimates  and  predictions. In either  case,  the  magnitudes of the 
observed  differences  can  be compared  to the  accuracy  measures  to  determine  whether 
the  differences are  significant; if so ,  the  measures of estimate  accuracy  can also be 



used to help  decide  which of the  conflicting  values  are  better or  whether some 
compromise between them should  be  considered.  The  third  application  for  measures 
of estimate  accuracy is presentation with the  final  derivative  estimates  for  the  users 
of the  derivatives. If the  derivatives  are  to  be  used  for  control  system  design,  for 
instance,  knowledge of the  accuracy of the  estimates is useful  for  evaluating  the 
sensitivity of the  control  system. 

Measures of accuracy  are  particularly  important if the  estimates are to be  used 
by  an  explicit  adaptive o r  learning  control  system  (ref. 2 ) .  Such immediate use 
precludes  the  interjection of engineering  judgment;  the  evaluation of the  estimates 
must be  entirely  automatic. Such  control  systems  must  recognize  poor  estimates  and 
suitably  discount  them. 

This  report  discusses both  the theoretical  and  the  practical  aspects of accuracy 
estimation.  The  examples  center on the estimation of aircraft  stability  and  control 
derivatives  but many of the  principles  have much wider  application.  The  accuracy 
of maximum likelihood  estimates is treated  in  depth  because many concrete  results 
are  available on this  subject  and  because maximum likelihood is the  estimation method 
most  commonly used  for  aircraft  stability  and  control  derivatives. 

The  definition of maximum likelihood  estimation is first  briefly  reviewed.  The 
various  measures of accuracy  in common use  are  then  di,scussed  and  compared. 
Flight  data are  used to evaluate some of the  theoretical  results  and  a  resolution of the 
discrepancy  noted  in  this  evaluation is presented.  Several  examples of the  application 
of accuracy estimation to real  flight  data  are  presented. 

Although it  discusses  ways to evaluate  the  accuracy of parameter  estimates  this 
report  does not directly  address  the  related  question of  how to improve  the accuracy. 
Reference 1 discusses  practical  aspects of obtaining  accurate  estimates of aircraft 
stability  and  control  derivatives from flight  data. 
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control  vector 

arbitrary  vector 
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arbitrary  vector 
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max maximum 

min minimum 

PY q Y  r derivative with respect to indicated  quantity  per  rad 

t true value 

Q Y  P Y  Ea’ E r  derivative with respect to indicated  quantity per  deg 

MAXIMUM LIKELIHOOD ESTIMATION 

Maximum likelihood  estimation is by  far the most  commonly used  technique  for 
estimating  parameters from dynamic  flight data. The  theory of  maximum likelihood 
estimation is extensive, so a lot can be  inferred about the accuracy of  maximum 
likelihood estimates. Some of the  accuracy  measures  discussed  in  this  report can be 
readily  applied only to maximum likelihood or related  estimators.  The  emphasis of this 
paper is on  maximum likelihood  estimates so the most basic  results on maximum 
likelihood estimation are  briefly  reviewed below. No attempt is made here to derive 
these  results or to discuss them in  detail  (refs. 3 to 5 ) .  References 6 and 7 present 
background information on probability  theory  in an easily  understood  manner. 

The derivations  in this paper  all  use continuous-time models with discrete 
observations. 

The basic form of the model is 

The  unknown vector f is to be  estimated. The F -  and  G-matrices  can  also be  functions 
of 5; if soy  they  usually  receive  special  treatment  and are not of concern to this 
report. The  specific forms of equation (1) used  for  aircraft  stability  and  control 
analysis  are given in  references 1 and 8.  

For each value of E, one  can define  the  probability  distribution  p (Z I f ) of the 
response Z .  The  likelihood  function is defined as follows: 

The likelihood  function is thus  a  measure of the relative  plausibility of the 
measured  response  for  each  value of E,. The maximum likelihood  estimate of 5 is 
defined as the value  that maximizes the Ekelihood function; in  other  words  it is 
the  value  that makes the measured  data most plausible. 
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To derive  the form of the likelihood  function  for  the  system described  by 
equation ( 1 )  , assume that  the  state noise  vector n is a  Gaussian  white  noise  vector 
with identity  covariance  and  zero mean. Also assume  that  the  measurement  noise 
vector q is a  zero  mean,  identity  covariance,  Gaussian  vector which is independent 
at  each time point.  The likelihood  functional  can  then be  evaluated  as follows: 

where 2 is the  Kalman-filter-predicted z based on the  postulated 5 ,  and R is the 
prediction error covariance  matrix. 

5 

It is convenient to work with the negative of the  logarithm of the  likelihood  func- 
tional.  Naturally, minimizing the  negative of the  logarithm is equivalent to maximizing 
the  original  function. If R is known, the term multiplying  the  exponential in 
equation (3) is a  constant  and  does not affect  the  maximization.  The maximum likeli- 
hood estimates  can  then  be  obtained  by minimizing the  following  cost  functional: 

N 

J ( 5 )  = 1 [ " ( t i )  - z ( t i ) ] * R - l [ i S ( t i )  - " ( t i ) ]  
i= 1 

Many algorithms  can  be  used to minimize J .  Reference 8 describes the Newton- 
Balakrishnan  algorithm, which has  been  found to work well. 

Two special  cases of equation (1) are often used. If F is 0 ,  2 can be  obtained 
simply by  integration,  and R is GG*. This is referred to as an output error method 
(ref. 9 ) .  If G is 0 ,  and g can be  inverted to obtain x from z ,  the  estimator is  essen- 
tially an equation error method (ref. 9 )  . The  general  estimator  derived from 
equation (2)  is referred to as a  prediction  error method (ref. 3 ) .  Although most of 
the  examples  in this paper  use an output error method, the  principles  are  also 
applicable to the  equation error and prediction error methods. 

Three of the statistical  properties of maximum likelihood  estimates are of signifi- 
cance to this  paper. Al l  are asymptotic properties;  that is,  properties that are 
exactly  true only in  the limit of infinite  data  time. 

First, the  estimates are asymptotically unbiased;  that i s ,  the  expected  value is 
asymptotically equal to the true  value.  Second,  the  estimates asymptotically  approach 
a  Gaussian distribution.  Third,  the  estimates  are asymptotically  efficient;  that i s ,  
their  variance  approaches  the limit given  by  the Cram&-Rao inequality. For finite 
data  time,  these  properties  are not  exactly true. If the  data time is long enough, the 
approximation will  be good; experience  supported  by simple theoretical  arguments 
suggests  that "long  enough"  can  usually  be  equated to a few periods of the lowest 
system natural  frequency.  These  properties  are  further  discussed  later. 
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I 

COMMON MEASURES  OF ACCURACY 

Various means of judging  the  accuracy of derivative  estimates  are  in  current  use. 
This section discusses  and compares  the  application of these  accuracy  measures to 
flight  data. 

First,  it is necessary to define  the term accuracy as  it  applies to real  data. An 
aircraft is never  described  exactly  by  the simplified models used for analysis. Some 
of the  sources of modeling error can be examined through simulations that  use more 
complex models than are  practical  for  use  in  flight  data  analysis. Such  simulations 
can  include,  for  example, models of specific  postulated  instrumentation errors 
(refs. 10 to 1 2 ) .  Regardless of the  sophistication of the  model, however,  unex- 
plained  sources of error will  always  remain.  Therefore,  there is not a  unique  correct 
model for an aircraft. 

The  concept of accuracy is difficult to define if no correct model exists. It is 
most easily  approached  by  considering  the problem in two parts: estimation and 
modeling. For the  estimation  problem , the model is assumed to describe the airplane 
exactly. The  accuracy of the  estimates  can then be precisely  and  quantitatively 
defined. Many results  are available on the  subject of estimation accuracy.  Several 
of them are  discussed  below. 

The modeling problem addresses the  question of whether  the form of the model 
can describe  the  aircraft  behavior  adequately for  the use  intended.  There is very 
little  guidance from the  theory  in  this  area.  Studies  such  as  references 13 to 15 
discuss  the selection of the  best model from a  set of candidates , but do not address the 
more basic problem of defining  the  candidate  models. For the most part ,  the deter- 
mination of model adequacy is based on engineering  judgment.  This  paper does not 
address  the modeling problem in  detail,  because few general  conclusions can be 
drawn. 

After the analyst  considers estimation  and modeling as  separate  problems,  it  is 
necessary to  look at their  interactions  in  order to complete the discussion of accuracy. 
One must examine the  estimates  that  result from a model that is judged to be adequate, 
although not exact. A s  in  the modeling problem,  this  process  involves  a  large amount 
of engineering  judgment. Some quantitative  results can be  obtained,  however.  The 
effects of specific  postulated errors can be  evaluated  by  sensitivity studies,  as  in 
reference 11. The  section of this  report  entitled Explanation for the  Discrepancy 
presents more general,  but  less  rigorous,  results. 

Engineering Judgment 

Engineering  judgment  is  the  oldest  measure of estimate reliability. Even with the 
theoretical  measures of accuracy now available,  the  need  for judgment  remains;  the 
theoretical  measures are merely tools that  supply more information on which judg- 
ment can be  based. By definition,  the  process of applying  engineering judgment 
cannot be  precisely  and  quantitatively  described. Algorithms  can be  devised to search 
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for  specific  problems,  but  a  final unautomated  judgment is usually  necessary.  There- 
fore  this  section is of necessity somewhat vague. It simply lists some of the  factors 
often considered  in making a  judgment. 

One of the most fundamental factors  in  judging  the  accuracy of the  estimates is 
the  anticipated  accuracy.  The  engineer  usually  has a priori knowledge of  how 
accurately  he can reasonably  expect to  be  able to estimate  the derivatives.  The 
advance  knowledge  can be  based on previous  experience  knowledge of the  relative 
importance and linear  dependence of the  derivatives  and the  quality of the  data 
obtained. Another basic  criterion is the reasonability of the  estimated derivatives. 
Before analysis is begun, the  approximate values of the  derivatives  are  usually 
known to within some range.  Drastic  deviations from this  range  are  reason to suspect 
the  estimates  unless the  explanation  for  the  poor  prediction is discovered or  the 
suspect  value is independently  verified. 

The  role of engineering judgment  in evaluating model adequacy  has  already  been 
mentioned.  The engineer will  be looking for violations of the  assumptions made in 
deriving  the model and for  unexplained  problems  that may indicate modeling errors. 
Both the  estimator  and  the  theoretical  measures of accuracy can be  invalidated  by 
modeling errors.  In any case  the magnitude of the  effects of modeling error must 
be  judged. 

The engineer  judges  the  quality of the fit of the  measured  and estimated time 
histories.  The  characteristics of this fit can be  used  as  indicators of  many problems. 
Many modeling error problems  first become apparent  as  poor time history  fits. Failed 
sensors  and  data  processing  errors or omissions are among the other  problems  that 
can be  diagnosed  using the time history  fits. 

Finally engineering judgment is used to assemble  and weigh all of the  available 
information about the  estimates. The  judgmental  factors mentioned above must be 
combined with information  from  the theoretical tools described below to arrive at 
final  best  estimates of both  the derivatives  and  their  accuracy. 

Bias of the  Estimates 

A bias is defined statistically  as  a  consistent or repeatable error.  The  statistical 
definition of bias is more general  than the commonly understood meaning of the  term. 
Let an estimator  be  described  as  a  function g (not necessarily  expressed  in  a closed 
form)  that operates on the  measured system response to obtain  the  estimate of the 
parameter  vector 

For a  specific  input Z is a function of the parameter  vector 5 and the random noise 
signals n and q as follows: 
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The bias is then  defined as  the  function 

or, in  other  words,  the  expected  value of the estimation error.  Note that  the  bias i s ,  
in general,  a function of the true  value. It is also  a  function of the input  signal, 
although  this  dependence is not explicit  in  the equation  above. 

An unbiased  estimator is defined as an estimator for which b 5 is 0 for all  val- 
ues of 5,. This  requirement is quite  stringent , and  unbiased  estimators  are  rare  for 
complicated problems. It is usually difficult to compute the  bias  because g is a 
complicated function of Z and commonly involves  the  solution of a  nonlinear 
optimization problem. 

( t )  

With reasonable  assumptions , maximum likelihood  estimators can be shown to be 
asymptotically unbiased.  This means that  the  bias  approaches 0 as the time interval 
analyzed becomes longer. For  finite time , the bias is not 0 , and  it is impractical to 
compute.  Balakrishnan  proves  asymptotic  unbiasedness  and  the  stronger  result of 
asymptotic  consistency  in  reference 4 .  The  proofs  are too involved to repeat  in  this 
report. 

Although the bias is only 0 in the limit of infinite  time,  it  will  be  small  for  long 
enough  finite time intervals. A few cycles of the  longest  period of oscillation are 
usually  sufficient to insure  that  the  bias is negligible. 

The proof that maximum likelihood  estimators are asymptotically unbiased 
implicitly  assumes  that  the model used to define the  likelihood  function is correct. 
The model incorporates  assumptions about the  noise statistics  as well as about the 
system dynamics. Different noise  assumptions result  in  different  estimators  for the 
same dynamic model. Basically , equation error  (regression)  estimates  are asymp- 
totically biased  in the presence of measurement  noise  and  output error estimates 
are asymptotically biased  in  the  presence of process  noise;  prediction  error  esti- 
mators allow for both  measurement  and process noise without asymptotic bias. 
Noise that is not white and  Gaussian wil l  result  in  biases  for  all of these  algorithms 
unless  special  provisions  are  made. Errors in modeling aircraft dynamics wil l  result 
in  a  bias for any estimation algorithm. 

Bias is not widely used  as  a  measure of derivative  accuracy for two reasons. 
First , it  reflects only the consistent  errors  and  ignores random scatter. In fact , i f  
the  bias  were known , it  could,  except  in  rare  cases, be subtracted from the  estimates 
to  obtain revised  estimates  that  were  unbiased.  Second,  the  bias is , in  general, 
difficult to compute. The  preferred approach is to use an estimator  that is matched 
to the  observed  noise  characteristics  in  order to keep the bias  arising from the  noise 
small  enough to neglect.  Bias  arising from errors  in the  dynamic model is unavoid- 
able;  the magnitude of such  bias is usually  judged  by  the  engineer. 

The analyst  should  always  consider the  possibility of significant  bias  due to 
modeling error.  Bias errors  are added to all  other  types of error  in the  estimates. 
Unfortunately , some bias  errors  are impossible to detect  solely by  analyzing the data. 
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The  estimates  can  be  repeatable with very  little  scatter  and  appear  to  be  accurate 
by all  other  measures,  and still have  large  biases. An example of this  type of 
problem is a  calibration error  in  a  nonredundant  instrument.  The only way to 
avoid  such  problems is to use meticulous care  and documentation in  every  step of the 
application,  including  modeling,  instrumentation,  and  data  handling. No automatic 
tests  exist  that  substitute  for  such  care. 

One source of bias  error is easy to analyze  and  should  be  considered-errors  in 
the  measured  flight condition or  vehicle  mass properties. Nondimensional derivatives 
are  directly affected by  errors  in  velocity, dynamic pressure,  mass, moments of 
inertia,  and  center of gravity.  The  possible  biases  in  the  measurement of these 
quantities  can  easily  be  translated  into  corresponding  biases  in  the nondimensional 
derivatives,  giving  bounds on the bias  errors from this  source. 

Scatter 

When several  maneuvers  are made at a  given  flight  condition,  the  scatter of the 
resulting  estimates is an  indication of accuracy. Data acquired from a  series of 
maneuvers with gradually  changing  flight  conditions can also  be  evaluated  for 
scatter i f  it is assumed  that  derivatives  change smoothly with  flight  condition. In 
that  case  the  scatter about a smooth fairing is examined. 

The  scatter  has  a  significant  advantage  over many theoretical  measures of 
accuracy:  it  measures the actual  performance  that some of the  theoretical  measures 
try to predict. For this  reason  the  scatter  manifests  several  effects,  such  as random 
errors  in the  measurement of flight  condition,  that  are  ignored  in  the  theoretical 
predictions.  The most informative  approach, of course, is to consider both the 
observed  scatter  and  the  theoretical  predictions. 

An inherent  weakness  in  the  use of the  scatter  as  a  gage of accuracy is that 
several  data  points  are  necessary to define i t .  Depending on the  application,  this 
weakness can range from inconsequential to insurmountable. A related problem is 
that  the  scatter  does not  give  any  indication of the  accuracy of individual  points, 
some of which may be more accurate  than  others.  For  instance, i f  only two conflicting 
data  points  are  available,  the  scatter  gives no indication as to which is more reliable. 
Figure 1, which is taken from reference 1, shows  estimates of C obtained from 

flight  data  for  a PA-30 aircraft.  The  scatter is large  and  shows  estimates of both signs. 
n 
P 

Figure 2 shows  the same data  segregated  into  rudder  and  aileron  maneuvers. In 
this  case,  the  scatter makes it  evident  that  the  aileron  maneuvers  result  in  far more 
consistent  estimates of C n  than  the rudder  maneuvers. Had only one o r  two aileron 

and one o r  two rudder  maneuvers  been  available,  however,  there would have  been no 
way  to deduce from the  scatter  that  the  aileron  maneuvers  were  superior. 

P 
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... . . ... 

The  scatter  shares  a  weakness with the theoretical  accuracy  measures  discussed 
below in  that  it  does not  account  for  consistent errors  (biases). Many situations can 
result  in small scatter about an incorrect  value. A simple  example of such  a  situation 
would be  the  presence of an error in  the measurement of the moment of inertia.  The 
scatter  should  therefore  be  regarded  as  a lower bound on the error  in the estimates. 
The  estimates may be  worse than is indicated  by the scatter  but  they  are seldom 
better. 

In spite of its deficiencies  the  data  scatter is an easily  used tool for  evaluating 
accuracy  and  it  should  always be examined when sufficient  data  points  are  available 
to  define i t .  

Cram&-Rao  Inequality 

The Cram6r-Rao inequality is the most important  result  in  the  theory of accu- 
racy  estimation. It is the  basis for the  parameter  sensitivities,  correlations  and 
Cram&-Rao bounds.  The Cram&-Rao inequality  gives  a  theoretical limit for  the 
accuracy  that is possible  regardless of the  estimator used. In a  sense,  the 
Cram&-Rao inequality  gives  a  measure of the  information  content of the data. 

This  section  gives  the  derivation of the Cramkr-Raoinequality and describes 
some of the  factors  that  link  the Cram6r-Rao inequality to maximum likelihood esti- 
mators. The derivation of the  inequality is essentially  that of Balakrishnan (ref. 4) 
with some changes  in  notation. 

A brief lemma is  first  proven. 

LEMMA: Let X and Y be  two random  N-vectors.  Then 

E { X X * }  > - E { X Y * }  ( E {  Y Y * } ) - l  E { Y X * }  

assuming  that  the  inverse  exists.  

Proof (by completing the  square): Let A be any nonrandom N-by-N matrix. Then 

E {  ( X  - A Y ) ( X  - A Y ) * }  > 0 (8) - 
because  it is a  covariance  matrix. Expand the  expression  as follows: 

E { X X * }  > - A E { Y X * }  + E { X Y * } A *  - A E { Y Y * } A *  

Choose A such  that 

A = E { X Y * }   ( E ( Y Y * } ) - l  
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Then 

E{XX*}  > - E { X Y * }  (E{  YY*})-' E {  YX*}  + E { X Y * }  ( E {  YY*)>-l E {  YX*}  
(11) 

- E { X Y * }  ( E {  Y Y * } > - l  E {  Y Y * }  ( E {  Y Y * }  1 - l  E {  Y X * )  

or 

E { X X * }  > - E { X Y * }   ( E { Y Y * } ) - l   E { Y X * }  0 (12) 

The Cramdr-Rao inequality is a  bound on E { @  - g t ) ( e  - g t ) * l g t I ,  the  covariance 
of the  estimate. (It should  be noted  that  the  covariance is a  function of true  value. ) 

THEOREM (Cram&?-Rao): Assume  that p (ZI 5,) exis ts  and is  sufficiently  smooth to 
allow  the  operations  required,  Then,  for  any  unbiased  estimator, 

where 

Proof: Recall that e is a  function of Z, the  system response. Let X and Y from the 
lemma be e - E, and V In p (Z j 5,). Let all of the  expectations  in the lemma be 

conditioned on 5 Concentrate first on the term, 
t 5, 

t '  

where dlZl is the volume element in  the  space of Z .  Substituting  the  relation 
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1 into  equation (13) gives 
~ 

* dlZl 

Observe  that e is a  function of Z only,  not of 5,. Then, if  p (Z 1 5 , )  is sufficiently 
smooth,  the first term  becomes 

Use the definition of the  bias  (eq. (7))  to  obtain 

Since 5 is not a  function of Z ,  the  second  term of equation (15) becomes t 

Thus,  using  equations (17) and (18) in  equation (15) results  in 

E ( X Y * I c t /  = I  + 

Define the  Fisher information  matrix as follows: 

M ( 5 , )  E E { Y Y * I S  t } E E 

Then, from the lemma, 

(2 1) 

Equation (21) is the Cram&--Rao inequality. For unbiased  estimators, b(5,) 

is 0 ,  so 

0 (22) 
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Equation (21) gives  a  lower  bound  for  the  variance of any  estimator with a  given 
bias;  equation (22) gives  the  specific form for  unbiased  estimators. Any unbiased 
estimator  that  attains  the  equality  in  equation (22) for  every  value of 5 ,  is called  an 
efficient estimator.  The development  above gives no guarantee  that  equality can be 
attained  by  any  estimator;  thus,  efficient  estimators do not always  exist. When they 
do exist, efficient  estimators  are of particular  interest,  because no  estimator  can 
attain  a  lower  variance without introducing  a  bias  in  the  estimates. In this  sense, 
efficient estimators  extract  all of the  information  available  in  the  data. 

The  Cram&?-Rao  inequality  applies to any  estimator,  but  the  theorems below 
make it  particularly  useful  for maximum likelihood estimators. 

THEOREM: I f  an  efficient  estimator  exists  for a probZem,  that  estimator is a maximum 
likelihood  estimator. 

Proof: An estimator  will  be  efficient i f  and only if equality  holds  in  the lemma. 
Equality holds if  X equals AY in equation (8). Substituting  for A from 
equation (10) gives 

x = E { X Y * }  ( E (  Y Y * } ) - l  Y (2 3)  

Substituting for X and Y and  using  equations (19) and (20) gives 

For unbiased  estimators b (5) is 0 ,  so 

Equation (25) must hold for all  values of 5, and Z ( e  is  a function of Z)  . For each 
Z , therefore,  it must hold when 5, equals e ( Z )  . The  left  side of the  equation is 
then 0 ,  so 

The  estimate is thus at a  stationary point of the  likelihood function.  Taking  the 
gradient of equation (25) with respect to 5 , ,  evaluating  at 5 = e ,  and  using 
equation (26) gives t 

15 



Since M is positive  definite  the  stationary  point is a  local maximum. It must in 
fact  be  the  only  local maximum because  equation (25) is valid  for  all 5 ,  and Z .  

The  requirement  for/p(Z] 5,)  dlZl to be  finite  implies  that  it is a  global maximum. 
The  estimator is therefore  a maximum likelihood  estimator. 0 

This  result is not as  useful  as  it might first seem because  there is no  guarantee  that 
an efficient unbiased  estimator  exists  for most problems. It motivates,  however  the 
following  important theorem. 

THEOREM: Under mild regularity  conditions,  maximum  likelihood  estimators  for 
dynamic  systems  are  asymptotically  ef f icient;   that  is ,   the Cram&-Rao  inequality 
approaches  an  equality  for  large  data  time. 

Proof: See reference 1 6 .  

Reference 16 also  proves  that  the maximum likelihood  estimates are asymptotically 
Gaussian.  Experience  supported  by simple theoretical  arguments  suggests  that 
a few cycles of the  longest  system  natural  period  are  usually  adequate  for  these 
asymptotic results to become very  accurate. 

The  consequence of the  results above is that  the Cram&-Rao inequality  gives  a 
close  approximation to the  variance of  maximum likelihood  estimates rather than 
just  a lower bound. 

The form of the  Fisher information  matrix given  in  equation (20) is not ideal  for 
computational purposes. If p ( 2  I c t )  is sufficiently  smooth,  a  useful  alternative 

expression  for  the  Fisher information matrix can be  obtained as shown in  the 
following theorem. 

THEOREM: I f  p (Z 15,) is  sufficiently  smooth,  the  Fisher  information  matrix  can  be 
expressed as  follows: 

Proof  Applying  equation (14) to the definition of M gives 
I 

16 



Examine the  expression 

The  second  term is equal to M ,  as shown in equation (28 ) .  The  first term is 
evaluated as follows: 

Thus, the information matrix can be  expressed 

q t , )  = - q v  5, 2 In P(ZI;,)lb,~ 0 (31)  

By using  this form  on the  system of equation (1)  , the information matrix  can  be 
closely  approximated by 

The H-matrix is identical to the dominant term of the  Hessian  matrix v 5(5> . The 
H-matrix or  a suitable  approximation is thus  required  by most algorithms  for mini- 
mizing the  cost  functional of equation (4 ) .  When F is 0 and G is known * H is an 
exact  expression  for  the information matrix.  Otherwise H is a good approximation 
to the  information  matrix. 

5 
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Uncertainty  Ellipsoid 

The  uncertainty  ellipsoid is an  approximation of the confidence  region based on 
the Cram6r-Rao inequality. It can  also  be  defined  by  using  concepts from opti- 
mization.  This  section  reviews both approaches to the  definition. 

Throughout  this  section  it is necessary to use  the  long form  of the notation  for  the 
probability  density  function.  The  abbreviated  notation  used  in  other  sections is not 
precise  enough to express the  concepts  discussed. 

To define  the  confidence  region,  first examine the  probability  density function of 
the  estimate. A s  shown above,  for maximum likelihood  estimates  this  density  function 
is approximately Gaussian, with mean equal to the true  value  and  covariance  equal 

to M ( g , ) - l .  

Estimates of equal  likelihood  lie on isometric  surfaces of the  density  function 

p-- (5) = Constant 5 (34)  

For  the density of equation ( 3 3 ) ,  these  isometric  surfaces  are  the  ellipsoids 

t t )  = Constant (35 1 

The  constant  in  equation (35)  is most  commonly chosen to be 1. This  gives  a l a  
( 6 3 . 2  percent)  probability  that ( e ,  X)X lies within  the  ellipsoid  for  any  fixed  unit 
vector X .  The  expression ( E ,  X)X is the component of E in  the  direction  given  by X .  
If given  that  the  distribution is Gaussian,  this  ellipsoid  uniquely  defines  the  density 
function. If repeated samples were  taken  and  plotted,  the  resulting  scatter would 
approximate  the shape  and  size of the  ellipsoid. It is easy to prove  that  this  ellipsoid 
has  the  least volume of all  regions  that have an equal  probability of containing e .  

When actual  flight  data are  analyzed,  the  value of 5, is not known, so the 
ellipsoid  described_above cannot  be drawn.  _This problem is handled  by  reversing 
the  roles of 5, and 5. First,  substitute (5 - 5) for 5 - 5 . This  centers  the  ellipsoid 

at e .  One can  then  define  the  probability  that  the  ellipsoid  covers 5,. Attention must 

be  paid to the  semantics of this  statement,  because 5 is not  a random variable. 
Second,  substitute M ( e )  for M ( t t ) ;  it is assumed  that M ( E )  is a good approximation 

of M ( t t) .  This assumption is usually  found to be good in  practice, even when is 

fairly  far from t,, because M (5) tends to be  relatively  insensitive to changes  in 5 for 

such  cases. 

( t> 

t 
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The  ellipsoid  defined by 

is called  the  uncertainty  ellipsoid. A s  discussed  in  the  previous  section, M (E) can 
be well  approximated by H .  This  paper  uses H to define  the  ellipsoid  because M is 
difficult to compute except  when  it  equals H exactly.  The  uncertainty  ellipsoid  as 
used  in  this  report is thus defined by 

This  ellipsoid  gives  a  theoretical  prediction, on the  basis of the  estimates from one 
maneuver, of the  shape  and  size of the  scatter  plot. 

The form of the maximum likelihood  estimator  suggests an alternate non- 
statistical  derivation of the  uncertainty  ellipsoid.  The  derivation is heuristic,  but 
enlightening.  The maximum likelihood  estimates are obtained by minimizing the 
negative  log  likelihood  functional, which can  be  expanded  about  the  estimate as 
follows : 

J (5) = J ( e )  + i(S - e )  * Vt2 J ( e )  (5 - e )  + Higher order  terms (38)  

Since 5 will almost never  equal e ,  J 5 will  not be  the minimum value of the  cost t ( t> 
function. It is reasonable  however, to assume that J will  be  close to the minimum. (5 *> 
More precisely  suppose  that J ( 5 , )  - J ( e )  will  usually b e  less  than 
This  situation is closely  related to the  suboptimal  control problem, 
optimum is not required,  but performance is required to be within 
of the  optimum. If terms of higher than  second order  are  ignored, 
written 

some constant. 
where  the  exact 
a  specified  range 
this condition is 

This  inequality  describes  the  interior of an ellipsoid. It was  previously  stated  that 
J (5) closely  approximates H , so this  ellipsoid is essentially  the same as the v5 

uncertainty  ellipsoid if  the  constant is chosen to be -. Thus, the  uncertainty 
ellipsoid  can  be  thought of as  the  result of approximately maximizing the  likelihood 
functional.  This  approximate maximization is a form of a  sensitivity  analysis  based 
on the  principle  that two values of 5 cannot  be  reliably distinguished  unless they 
result  in  sufficient  differences  in  the  likelihood  functional. 

1 
2 

Figure 3 is a  one-dimensional picture of the  construction of the  uncertainty 
ellipsoid. In this  case  the  "ellipsoid" is the  line segment  from 5 
is actually  a  degenerate  one-dimensional  case of an ellipsoid.  Figure 4 shows  the 
same construction  with two unknowns.  The  interior of the  uncertainty  ellipse is 
shaded. Most  of the  concepts  discussed below can be  illustrated by using  such  a 
two-dimensional ellipse. 

min to 5rnm 9 .  
which 
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Figure 3.  Construction of one-dimensional  uncertainty  ellipsoid. 

Figure 4 .  Construction of two-dimensional  uncertainty  ellipsoid. 
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The  uncertainty  ellipsoid  gives  the most complete picture of the  theoretical 
accuracy of the  estimates.  it is difficult,  however, to display the  information  given 
by the  ellipsoid on a two-dimensional sheet of paper.  Cross  sections of the  ellipsoid 
can be  informative,  but  choosing  the  appropriate  cross  sections to examine is difficult, 
because  there  are  typically from 1 0  to 30 parameters;  that is, the  ellipsoid is 10 to 
30 dimensional.  The  problem of presenting the results  in an understandable form is 
further complicated when many maneuvers  are  used,  as would be  required to inves- 
tigate  the  full flight  envelope of a  high performance vehicle. 

To make the most effective use of the uncertainty  ellipsoid,  it is necessary to find 
a  simplified format for  presenting  the information.  The  next three  sections of the 
report  discuss  the most  commonly used of these formats: sensitivity,  correlation, 
and Cramkr-Rao bound. 

Sensitivity 

Sensitivity is a  measure of  how  much the fit error ,  J ,  increases  for  a given 
change in a  parameter. The sensitivity can be  defined  for  any  estimator,  such  as 
maximum likelihood,  that  involves minimizing a cost  function.  The  inverse of the 
sensitivity,  called the insensitivity,  is  a  measure of  how much a  parameter can be 
changed from the  estimated value without causing the fit error to increase  by more 
than  a  given  amount. All of the other  parameters  are held fixed  at  the  estimates 
during  this  change. The insensitivity is more convenient  than  the sensitivity for 
purposes of graphic  presentation  and comparison with other  measures. 

Instead of actually  recomputing  the  fit error for  parameter  changes, the insensi- 
tivity is generally defined by  a  second-order approximation (eq. ( 3 8 ) ) .  A s  discussed 
above, the restrictions on the fit error can be  (approximately)  interpreted geomet- 
rically  by  constraining the parameters to lie within  the uncertainty  ellipsoid. An 
expression for  the insensitivity  is  easy to obt@n from the  equation  for  the uncertainty 
ellipsoid  (eq. ( 3 7 ) ) .  Investigate  changes  in 5 along  the  direction of the ith 
parameter-that is, 5 - e = ae , where ei is a unit vector  in the  direction of the ith 
parameter  and a is an arbitrary  scalar. To stay  inside the ellipsoid, the following 
must be true: 

i 

2 k  
a e i  Hei < - 1 

Since 

e; Hei = H . .  > 0 
11 - 

then 

The maximum magnitude of a is  given by the equality, which occurs  at the intercept 
of the ei axis with the  ellipsoid.  This  value is defined as the insensitivity with 
respect to ti, and  the  inverse of this  value is the sensitivity. It should  be noted  that 

2 1  



the  insensitivity is often defined as V 5(5,ii] -'I2 instead of ( H..  11)-1/2, but  the 

difference is generally of small import,  and the  definition using H is more convenient 
for the  purposes of this  paper.  Figure 5 illustrates  the geometric interpretation of 
the  insensitivity  for  a problem with two unknowns. For convenience,  the  origin  has 
been  redefined to be the center of the ellipse,  which is the maximum likelihood esti- 
mate. The  insensitivities of t1 and c2  are  labeled  as S1 and S 2 .  

[ c2 

Figure 5 .  Geometric interpretation of insensitivity. 

Statistically, the insensitivity is approximately  the  conditional  standard  deviation 
of the  parameter  estimate, given  that all of the other  parameters  are  known. The 
expression for this  conditional  standard deviation is based on the Cramhr-Rao in- 
equality. It was shown earlier that  the  covariance  matrix of the  estimates can be 

approximated by H-' and  that  the  estimates are approximately  Gaussian.  Letting 5, 
represent  all of the  parameters  except 5 .  and  using  Bayes'  rule  (refs. 6 and 7 ) ,  the 

conditional density of e given E is 
1 

i 0 

P(t i  (43) 

This is  to be  evaluated  at  a  known  value of e o .  For a known value of e o ,  p(eo) is  a 

constant,  and  p(ei, E o )  is given by equation ( 3 3 ) .  Thus, 

p(eileo) = Constant exp -T ti  - t i  H~~ t i  - t i  [ 'r t>* c t)] 
(44) 

22 



where H and  the  constant  depend on e o .  The Cram6r-Rao inequality  thus  gives the 
approximation (Hii)-1’2 for  the  conditional standard deviation of ti, which is equal 
to the  insensitivity. 

The  insensitivity is a  reasonable  measure of accuracy only  when a  single  param- 
eter is being  estimated,  because the  estimates of the  other  parameters  are  never 
exact,  as  the  analysis  assumes. Any effect of correlation  between  parameters is 
ignored;  in  fact,  the  insensitivity to a  given  parameter can be  evaluated without 
even knowing what other  parameters  are  being  estimated. When several  parameters 
are  estimated, the insensitivity  gives only a lower  bound for the error  band. The 
error  band is always  at  least as  large  as the  insensitivity  regardless of what other 
parameters  are simultaneously  estimated; correlation  effects  between the parameters 
can increase,  but  never  decrease, the error  band. 

In practice,  correlation effects  tend to increase the error  band so much that  the 
insensitivity is virtually  useless  as an indicator of accuracy. An insensitivity 
analysis wi l l  detect  the  obvious  problems  that exist when a  parameter  has  little effect 
on aircraft  response; an example of such  a problem would arise  if an attempt were 
made  to estimate a  control  derivative for a  control  that was zero  for an entire ma- 
neuver. The  insensitivity will  not indicate,  however, when  the effect of a  parameter 
cannot be  distinguished from the  effects of other  parameters, a much more common 
problem.  The  simplest example of the  inadequacy of the insensitivity is the estimation 
of a  control  derivative of a control  that is fixed at a  constant  but  nonzero  value  for an 
entire  maneuver.  The  insensitivity would indicate  there to be no problem in estimating 
the derivatives  because the  control  derivatives do affect aircraft  response. The 
control  derivatives  cannot be estimated,  however,  because  their effect cannot  be 
distinguished from the  effects of biases. 

Because of these well  known problems, the insensitivity  is seldom used to gage 
the accuracy of parameter  estimates. The insensitivity  is  useful only as  a one- 
dimensional  tool, whereas  typical  aircraft problems are 10 to 30 dimensional. 

Correlation 

The  inadequacy of the  insensitivity  as  a  measure of estimate accuracy  has  led to 
the widespread  use of parameter  correlations. It was noted  in  the previous section 
that  the  correlations among parameters  result  in much larger  error  bands than  the 
insensitivities.  The  use of correlations  as  indicators of accuracy  has  therefore been 
advanced (refs. 17  to 20)  . 

The correlation between two parameters ti and g i  is  defined as 

“/(Ei - gi.’)(Ej - gjt)iAma. i n  other  words,  it is a n  off- 

diagonal element of the covariance  matrix of the estimate,  normalized  bv  the 
corresponding  diagonal  elements. For maximum likelihood estimates, <he covariance 
matrix is approximated by H -1 using  the Cram&-Rao inequality.  The  resulting 

approximation  for the  correlation between ti and 5 .  is ( H -l>ii /,/-The 
3 
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quantities computed from H are often referred to as the  correlations (the qualifier 
"approximate" is omitted).  The limitations of these  quantities  are  better  understood 
if  it is realized  that  they only approximate  the true  correlations of the  estimates. 
Geometrically,  the correlations  are  related to the  eccentricity of the  uncertainty 
ellipsoid,  provided  that  the  sensitivities of the unknown parameters  are  all  equal. 
(This  can  always  be made true  by  a  scale  change. ) The  closer the  magnitudes of the 
correlations  are to 1, the more eccentric  the  scaled  uncertainty  ellipsoid becomes. 
The  magnitude of the  correlations can never  exceed 1, except  by round-off errors  in 
the  computation. 

Occasionally,  the  conditional  correlations are  used.  The  conditional  correlations 
are defined  the same as  correlations  except  that  all of the  expectations are taken on 
the  assumption that  all  except the two parameters  under  consideration  are  known. 
(Statistically  speaking, the  expectations are conditioned on the  other  parameters. ) 
For maximum likelihood estimates, the  conditional correlation would be approximated 

by -Hij / d m ,  the same expression  as  before  except  that H is  replaced  by H 

and the sign  has  changed.  The conditional correlations  are somewhat easier to  com- 
pute  than  the  full correlations,  since  it  is not necessary to invert H .  The comput- 
ational  cost of inverting H is usually  negligible,  however. If there  are only two 
unknowns,  the  full  and  conditional  correlations  are  identical. If there  are more than 
two unknowns,  the  conditional  correlation can give  a  quite  different  picture  than  the 
full  correlation. A well  known example is  the  case  when H is  an N-by-N matrix with 
1's on the  diagonal and all of the  off-diagonal  elements are  equal to X .  A s  X (the 
conditional correlation)  approaches - the full  correlation  approaches 1. In the 

limit,  when X equals - the  matrix H is singular.  Thus, for  large N , the  full 

correlations can be quite  high  even when  the  conditional  correlations are low. This 
example can easily  be  turned  around to show that  the  converse is also true. All of 
the comments made herein about the correlations  also  apply to the  conditional 

correlations if  H-' is replaced  by H .  

-1 

-1 
N -  1' -1 

N - 1 '  

There  are  three  objections to using the correlations  as  a  measure of accuracy. 
First, although  the correlations give  information  about  the shape of the uncertainty 
ellipsoid, they completely ignore  its  size.  Figure 6 shows two uncertainty  ellipses. 
Ellipse A is completely contained  within  ellipse B , and is therefore  clearly 
preferable;  yet  ellipse B has  zero  correlation, and ellipse A has  high  correlation. 
From this  example,  it is obvious  that  excellent  estimates  can  have  high  correlations 
and poor estimates  can  have low correlations. In order to evaluate the quality of the 
estimates, information is needed about the  sensitivities  as well as the correlations. 
Neither is  adequate  alone. 

Examples of the  problem shown in  figure 6 are  easily  found  in  realistic  situations. 
Figure 7 (a) shows a  typical  elevator  pulse  input.  The  steady-state  elevator deflection 
at  this  flight condition is loo. A large  portion of the energy  in  this  input is from the 
steady-state  value of loo; the  energy  in the pulse is much smaller.  Thus,  the 
elevator  derivative  estimates  will be highly  correlated with the  constant  bias  estimates. 
Because of the  high  energy of the total input  signal, the sensitivity to the elevator 
derivative  estimates will  be  high. The  high  sensitivity  compensates  for the  high 
correlation. 
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/ Ellipse A - X 

Figure 6 .  Need  for  sensitivity  information. 

Figure 7 (b) shows  the same input  as  in  figure 7 (a),  except  that  the  zero  refer- 
ence  line  has  been  redefined so that  the  steady-state  value of the  elevator  input is 
Oo; this  redefinition would correspond to analyzing  the  maneuver  with  perturbation 
equations.  The  correlation between  the  elevator derivative and bias  estimates  will 
be low for the  input  in  figure 7 (b) . The  sensitivities wil l  also be lower  for  the  input 
in  figure 7 01) than  for  figure 7 (a) ,  balancing the  change  in  the  correlations. 

Elevator 
deflection, 10 

deg 

Time 

( a )  High  correZation,  high  sensitivity. 

Elevator 

deg 
deflection, 0 

- 10 
Time 

( b )  Low correlation, low sensit ivity.  

Figure 7 .  Interaction of correlation  and  sensitivity. 
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Figures  7(a)  and 7(b) illustrate  that the correlation alone is not a  reasonable 
measure of accuracy.  The  correlation  in  this example can be  changed  at will  to  any 
value from -1 to 1 simply by  redefining the reference  axis  used for analysis. Of 
course, the estimates,  and  thus  their  accuracy,  are not really affected by  this 
change  in axis. The  change  in  the  correlation is balanced  by  a  corresponding 
change  in  the  sensitivity. 

The  second  objection to the use of the  correlations is more serious  because  it 
cannot be  dealt with simply by looking  at sensitivities  and  correlations  together. In 
the same way  that  the  sensitivities  are one-dimensional tools,  the  correlations  are 
two-dimensional tools.  Linear  dependence of higher  order is not  manifested in the 
correlations. Since aircraft  stability  and  control  problems  typically  involve 10 to 
30 parameters  the  utility of a tool restricted to two-dimensional subspaces is 
limited.  Three simple  examples of realistic  situations  serve to illustrate the 
dimensional  limitations of the correlations. All  of these examples  involve free  lateral- 
directional oscillation without pilot inputs. 

For the first  example,  suppose  that  there is a yaw rate feedback to the rudder 
and  an  aileron-to-rudder  interconnect. Both the aileron and the rudder  signals  are, 
therefore,  proportional to yaw rate. In this  case, the  conditional  correlations of the 
aileron  rudder  and yaw rate  derivatives  are 1 (or  nearly so with  imperfect data). 
Conditioned on the  aileron  derivatives  being known  exactly  changes  in  the rudder 
derivative estimates  can be  exactly  compensated for  by  changes  in the yaw rate 
derivative  estimates; thus, the  conditional correlation is 1. The  unconditional 

correlations,  however  are  easily  seen to be only -. In general  changes  in  the 

rudder  derivative  estimates must be compensated for  by some combination of changes 
in the  aileron  and yaw rate  derivative  estimates. Since there  are no constraints on 
the  proportions of the compensation to  come from the  aileron  and  the yaw rate 

derivative  estimates, the  unconditional  correlations would be  (because, on the 1 

average ;z of the compensation would come from each source). 

1 
2 

1 

For the  second example suppose  that  there  is no feedback  and  that  there is a 
neutrally damped Dutch roll oscillation (or  a  wing  rock) . The signals p , p , and 
r are  thus  all  sinusoids of the same frequency, with different  phases and  amplitudes. 
Taken two at a time these  signals  have low correlations.  The conditional correlations 
consider only two parameters  at  a time so the  conditional  correlations of the p , p 
and r derivatives  are  all  low. Nonetheless  the p p and r signals  are  linearly 
dependent if they are  all  considered  together  because  they can all be  written as 
linear combinations of a  sine wave and a  cosine wave at the Dutch roll  frequency. 
Thus the unconditional  correlations of the p p , and r derivatives  are 1 (or nearly 
so with imperfect data). 

Both of the  examples above have  three-dimensional  correlation  problems  that 
prevent the parameters from being  identifiable.  The  conditional  correlations  are low 
in one case,  and the  unconditional  correlations are low in the other. Although either 
alone is insufficient, examination of both the  conditional  and  unconditional correlations 
will always reveal  three-dimensional  correlation  problems. 
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For  the third example , suppose  that  a  wing  leveler  feeds  back  bank  angle to the 
ailerons  and  that  a  neutrally damped Dutch roll is present with the  feedback on. 
There  are  then  four  pertinent  signals (p , p , r , and E a )  that  are  sinusoids with  the 
same frequency  and  different  phases. In this  case , both  the  conditional  and  the  un- 
conditional correlations  are low.  Nonetheless , there is a  correlation problem , and 
it  causes some parameters to be  unidentifiable.  This  correlation problem is four 
dimensional , and  it cannot be  seen  by  using  the two-dimensional correlations. 

The  estimated correlations or conditional correlations  are  closely  related to  the 
eigenvalues  (ref. 2 1) of 2-by-2 submatrices of the  matrices H or H , respectively , 
normalized to have  unity diagonal  elements.  Specifically , the  eigenvalues  are 1 plus 
the  correlation  and 1 minus  the correlation;  thus,  high  correlations  correspond to 
large  eigenvalue  spreads.  Correlations of higher  order would be  investigated  by 
using  the  eigenvalues of larger  submatrices. If it is looked at in  this  light , the 
investigation of 2-by-2 submatrices is revealed  as an arbitrary choice  dictated more 
by familiarity  than by any  objective  criterion. The eigenvalues of the  full  normalized 
H- or H-'-matrix would.seem more appropriate  tools.  These  eigenvalues  and  the  cor- 
responding  eigenvectors can provide some information,  but  they  are seldom used. 
In principle , small eigenvalues of the  normalized H-matrix or large  eigenvalues of the 
normalized H-'-matrix indicate  correlations among the parameters with significant 
components in  the  corresponding  eigenvectors. Note that  the  eigenvalues of the 
unnormalized H- and H-'-matrices are of very  little  use  in  studying  correlations , 
because  scaling effects  tend to dominate. 

-1 

The  last objection to the use of the  correlations is the difficulty of presentation. 
For obvious reasons, no attempt has  ever  been made to display the  estimated cor- 
relations between all of the parameters  graphically. The usual  presentation is simply 
a  printing of the  estimated correlation  matrix.  This is feasible  when  the  number of 
maneuvers  used is very  small. If a  flight  test  program with many maneuvers is used 
to investigate the behavior of a  vehicle , however,  printing  all of the  estimated 
correlation  matrices would be  pointless:  the data could not be incorporated  into  a 
coherent  picture of the  vehicle's  flight  characteristics. 

Cram&?-Rao Bound 

The Cram&-Rao bound is also  based on the uncertainty  ellipsoid.  This  measure 
of accuracy is often referred to by  other names , including estimated variance  and 
standard  deviation.  These  quantities  are the same as the Cram&-Rao bound,  except 
that  the  variance is the Cram6r-Rao bound squared. Cram&-Rao bounds  are  also 
equivalent to F-statistics . 

By the  definition of the  covariance  matrix, the standard deviation of the ith 
parameter is the square root of the ith  diagonal  element.  For maximum likelihood 
estimates , the Cram&-Rao inequality  gives  the  approximation H for  the  covariance 
matrix.  The  quantity ,,/m is called  the Cramh-Rao  bound.  (There is some 
justification  for  defining  the  bound as ,/my but M is difficult to compute except 

-1 
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when it is equal to H; thus  the definition used  here .) The CrambRao  bounds  are 
often referred to as  standard deviations  without  the  qualifier  "approximate".  The 
limitations of Cramkr-Rao bounds  are  better  understood if i t  is realized  that  they  are 
approximations of the  true  standard  deviations of the  estimates. 

The  approximation of the  standard deviation discussed  here  should not be con- 
fused with the  sample standard deviation y although  they are closely  related  in  that 
both are estimates of the same quantity.  The  discussion  in  this  section  concerns an 
estimate of the true  standard deviation  that is based on the  theoretical  assumptions 
made about the  system,  and is computed for  each  data  point  using the Cramkr-Rao 
inequality.  The sample standard deviation is an  estimate of the same quantity  but 
it is based on the  observed  scatter of the data;  no  assumptions  about  the  system are 
made and only a  single  value is computed on the  basis of all of the  data points. 
Naturally,  since  the Cram&-Rao bound  and  the  sample  standard deviation are differ- 
ent  estimates of the same quantity,  it is worthwhile to compare  them. 

The Cramkr-Rao bounds  are closely related to the  insensitivities. Recall that  the 
insensitivity is approximately  the  conditional standard deviation of the parameter 
estimate  given  that all of the  other  parameters  are  known.  The Cram6r-Rao bound 
is an  approximation of the  unconditional standard  deviation. Whenever the term 
"standard deviation" is used,  it is assumed  that  it is unconditional  unless  otherwise 
specified.  The computational relationship is also  interesting. The Cramkr-Rao 
bound is dm, whereas  the  insensitivity is dm. The  geometric relationship 
between  the quantities is often  overlooked.  The  insensitivity can be  defined as the 
solution to an optimization problem: maximize I g i  - E i  I while staying  within the 

uncertainty  ellipsoid  and  holding  all of the other  parameters  fixed  at the estimates. 
The Cramkr-Rao bound is the  solution to the same problem  without  holding  the other 
parameters  fixed.  The removal of the  restrictions on the optimization is directly 
analogous to removing  the  statistical  conditioning. A two-dimensional sketch of the 
geometric relationship between  the two measures is shown in  figure 8.  The  insen- 
sitivities of E,, and E,, are labeled SI and S, while  the Cramkr-Rao bounds  are 

labeled C 1  and C 2 .  

Figure 8 .  Geometric  relationship  between  Cram&-Rao  bounds  and  insensitivities. 
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To prove  that  the Cram&-Rao bound is the  solution  to  the optimization problem 
above, we will  state  and  prove  a more general  result.  The  general  result is actually 
easier to prove. 

THEOREM: Given a fixed  vector y and a positive  definite  symmetric  matrix H ,  then 
the  maximum of x* y ,  subject to  the constraint  that x* Hx < 1 ,  is g iven   by  
&GF;. 

- 

Proof: Since x* y has no unconstrained local extrema,  the solution must lie on the 
constraint  boundary, so the  inequality  in  the  constraint  can  be  replaced  by an 
equality.  This  constrained optimization problem can be  restated  by the use of 
Lagrange  multipliers  (ref. 22)  as the unconstrained minimization of 

f ( X ,  A )  = X* y - -A(x* H X  - 1) 1 
2 (45 1 

where h is the scalar  Lagrange  multiplier.  The maximum is found by  setting  the 
gradients to zero,  as follows: 

0 = vx f ( ~ ,  A) = y  - ~ H x  (46 1 

(47) 
a 0 = a h  f ( x ,  A) = --(x* Hx - 1) 1 

2 

1 From equation (46), 

x = h  H y -1 -1 

I Substituting  this  into equation (47) gives 

or 

or 

I Substituting  into  equation (48) gives 

H Y  
-1 

X =  

JX 

i 
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and  thus 

x* y = = 4 3  (5 3) 

I at  the  solution. 0 

For the  specific  problem, y is ei , a  unit  vector  along  the  axis of the  ith  parameter, 

and 3: is replaced  by 5 - E .  We are  then  seeking to maximize 
* 

(5 - e )  ei = ti - e i  (54) 

The  solution is given  by 

which is 
general, 

fact,  the 

the  assertion we set out to prove. Note that  the  solution  point is not,  in 
along  the e .  axis,  in  contrast to  the  sensitivity  problem  (see fig. 8 ) .  In 

solution point is 
Z 

Recognize H - l  ei as  the  ith column of H - l .  This  completes  the  solution of the specific 

problem, 

The  solution of the  general  problem  has  other  applications.  The  value of any 
linear combination of the  parameters can be  expressed  as <* y for some fixed  y-vector. 
Thus,  the  general  solution  shows how  to evaluate  the  accuracy of arbitrary  linear 
combinations of the  parameters.  Such  analysis might be  used to show,  for  instance, 
that  the estimate of CQ + CQ6 was  quite  accurate,  even  though  the  individual 

P a 
estimates of C Q  and CQ were  poor.  This  situation would be  expected i f  roll  rate 

P 6 a 
feedback provided  the only aileron  input.  Reference 2 3  suggests  that  a  sensitivity 
analysis  be made of situations  where  the  correlation is high. The  Cram&-Rao  bound 
provides  exactly  such  a  sensitivity  analysis. 

On the  basis of this geometric picture,  the Cramhr-Rao bounds  can  be  thought of 
as  insensitivities  that  are computed  accounting  for  all  parameter  correlations.  The 
computation and  interpretation  are  valid  in  any  number of dimensions,  unlike  the 
sensitivities, which are one-dimensional  tools, or  the  correlations, which are two- 
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dimensional tools.  The Cram&-Rao bounds  are  thus  the  best of the  theoretical 
measures of accuracy  that  can  be  evaluated  for  a  single  maneuver. 

Some authors  have advocated  the  examination of the  sensitivities  and  estimated 
correlations  in  addition to or instead of the Cram&'-Rao bounds  in  order to evaluate 
the  accuracy of the  estimates  (refs. 17 to 2 0 ) .  However,  the Cram6r-Rao bounds 
already  include  all of the  effects of sensitivities  and  correlations.  The  sensitivities 
and  estimated  correlations may be useful  in  finding  the  source of a  problem  indicated 
by  large Cram&?-Rao bounds,  but they do not provide  additional  information as to 
whether  a problem exists. Any argument  about  the  validity of the  theory  used to 
compute the Cram&-Rao bounds must take  into  account  that  the same theory is used 
to compute the estimated correlations. 

EVALUATION  WITH  FLIGHT  DATA 

Because of the  numerous  qualifications  about  modeling error and  noise  statistics 
theoretical  measures of accuracy must be  validated  before much confidence  can be 
placed  in  them.  The Crambr-Rao bounds have  been  advanced as the  best of the 
theoretical  measures of accuracy.  The comparison of the Cram&--Rao bounds with 
the  sample standard  deviations obtained from the  data  scatter  gives  a good indication 
of the adequacy of the  assumptions made in  the  theoretical  development. 

It has long  been known that  this comparison  shows  significant discrepancies if 
actual  flight  data are  used.  This  section examines these  discrepancies and  advances 
an  explanation  for  them. Approximate corrections  for  the problem are then  suggested 
and  evaluated. 

Discrepancy  in  the Cram&--Rao Bound 

Data  from a PA-30 aircraft  were chosen to evaluate  the Cram&-Rao  bounds. 
(This  example  was previously  reported  in  ref. 2 4 . )  Data  from 18 maneuvers made 
with this  vehicle  were  obtained. Each maneuver  consisted of an aileron  input  ini- 
tiated from steady  flight.  The  derivatives  were  estimated  by  the "LE3 program 
(ref. 8) using an  output error maximum likelihood method (measurement  noise only). 
A typical match of the  measured  and  estimated time histories is shown in  figure 9 .  

Figure 10 presents  the  estimates of Cn and CIz and  the Crambr-Rao bounds 

obtained from these  maneuvers.  The  vertical  scales  in  these  plots  are  exaggerated to 
show the scatter,  and  the  angle of attack  scale is exaggerated to separate  the ma- 
neuvers. No significant  differences  in  the  derivatives are expected  over  this  small 
angle of attack  range;  the 18 maneuvers  can  be  regarded  as  being  at  essentially  the 
same flight  condition. 

P P 

The Cram&-Rao bounds  in  this  plot  are so small  that  they  are  difficult to see; they 
are roughly  the same size as the  symbols.  The  data  scatter is much greater than 
indicated  by  the Cram&-Rao bounds.  Quantitatively,  the sample standard  deviation 
is about  nine  times the  average Cram6r-Rao bound.  The  existence of this  discrepancy 
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Figure 9 .  Comparison of measured  and  estimated  time  histories for flight  data. 
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Figure 10. Estimates  from  flight  data. 
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between the  data  scatter  and  the Cram&-Rao bound  has  long  been  known. It has 
become common practice to multiply  the Cram&--Rao bounds  by  a "fudge  factor" of 
5 to 10 (ref. 24) .  The  resulting  values  proved  useful  for  evaluating  the  accuracy of 
estimates,  but  the  necessity of the  unexplained  fudge  factor  detracted from the con- 
fidence. Because of this problem with the Cram&-Rao bounds y several  reports  used 
the estimated correlations  as  primary  indicators of accuracy  (refs. 20 and 25)  in  spite 
of the  previously mentioned  problems  with the  correlations.  The  estimated  cor- 
relations  are  based on the same theoretical  foundation as the Cram&-Rao bounds  and 
thus  should  be  equally  suspect if errors  are known to exist.  Other  reports  ignored 
the  fudge  factor  and  quoted  overly  optimistic  values of accuracy  (ref. 1 8 ) .  Discrep- 
ancies  larger  than  the quoted  accuracy  have  then  been  attributed to various  effects 
without sufficient  data  points to establish  whether  the  observed  differences  were 
significant or lay  within the  scatter  band. 

The  evaluation of accuracy  measures  with  actual  flight  data is complicated by  the 
impossibility of establishing  true  values  for comparison and  by  the  inevitable  presence 
of unmodeled effects. Although tests with actual  flight  data are  necessary  for  final 
validation,  preliminary work is aided by  the more controlled  environment  provided 
by simulated data.  Therefore  the  experiment  described above  was repeated with 
simulated data. 

To  mimic the  flight  experiment  as  closely  as  feasible  the  control  inputs  measured 
from the  flight  data  were  used to create simulated data. Eighteen  maneuvers  were 
simulated using  the same flight  conditions as for the 18 actual  maneuvers.  The same 
model was used  for  the simulation as  for  the  estimation.  The same true  values of the 
nondimensional derivatives  were  used  for  all 18 maneuvers. A pseudorandom  noise 
generator  was  used to add  simulated  white  Gaussian  measurement  noise to the com- 
puted  responses.  The measurement noise  power for each signal  was  proportional to 
the  average  residual power observed in  the  flight  data  for  that  signal.  The  propor- 
tionality  constant  was  adjusted to obtain  the same magnitude of scatter  in  the  estimates 
from the simulated  data as was observed  in  the  flight  data.  The  derivatives  and 
Cram&-Rao bounds  were  estimated from the  simulated  data using  the same program 
as for  the  flight  data. A typical  comparison of the  simulated  measured time history 
and  the  estimated one is shown in figure 11.  

The  estimates of C and CQ from the  simulated  data are shown in  figure 12 
P 

plotted  with  the same scales  as those  used in  figure 10.  The  true  value of Cn 

is 0 . 0 0 1 ,  and  that of C Q  is -0.0007. 
P 

P 
The  scatter  in  this  plot is about  the same as for the  flight  data  because  the simu- 

lated  noise  power  was  adjusted to achieve this  scatter.  The Cram&-Rao bounds  for 
the  flight  and  simulated  data  differ  drastically.  The Cram6r-Rao bounds  for  the sim- 
ulated  data are about 10 times as  great  as  for  the  flight  data  and  agree  well with  the 
observed  scatter. For the 11 derivatives estimated  (not including  bias  terms)  the 
ratios of the sample standard  deviations to the Crambr-Rao bounds  range from 0 . 6 8  
to 1 . 3 2 .  This is excellent  agreement  for  a  sample of only 18 maneuvers. 
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The Cramdr-Rao bound  thus  agrees  very well with the scatter  in the  simulated 
data , but  disagrees  drastically with the  flight  data.  The following sections  examine 
the  reasons  for  this  discrepancy. 

Previous Attempts at  Explanation 

Several  explanations  have  been  advanced to attempt to resolve the discrepancy 
in  the Cram&-Rao bound. Few of these  ideas  have  been  discussed  extensively  in 
formal  publications  because of their  speculative  nature. A s  shown below, none of 
the  proposals  provides  a  satisfactory explanation  for discrepancies of the  magnitude 
observed  in  practice. 

The  excellent  performance of the Cramdr-Rao bound with simulated  data inval- 
idates many of the  suggestions that  could  be  advanced to explain  the  discrepancy. 
One such explanation would be an error  in the formulation o r  computer  programming. 
An error of this  type would affect the  simulated as well as the  flight results,  since 
the same computer  program was  used for both. 

Another  explanation is that  the Cram&-Rao bound is only a  lower bound.  The 
maximum likelihood  estimator has  been  proved to be asymptotically efficient; that is , 
the Cram6r-Rao inequality  approaches an equality as time approaches  infinity. For 
finite  data time the  equality  does not hold. Intuition , which can be  backed  up  by 
analysis  in  this  case,  suggests that  a few periods of the natural  frequency  should  be 
enough for the  asymptotic result to be closely approached.  The  fact  that the  simulated 
data  agree so well with the scatter  verifies  that the time is long  enough to  make the 
equality  a  very good approximation. 

The above  attempts to explain  the  discrepancy  between  the Cram6r-Rao bounds 
and  the scatter implicitly  assume that  the  scatter is a  reasonable  measure of accuracy. 
For the  simulated data,  where  the  true  values  are known to be constant,  this statement 
is  almost a  definition of accuracy  for an unbiased  estimator. For the  flight  data , other 
possibilities must be  considered. A s  stated above , the  simulated  data  noise level  was 
chosen to  make the scatter match that of the  flight  data,  and the resulting Cramdr-Rao 
bounds of the  simulated  data  were larger than  those of the  flight  data. A s  is evident 
from a  comparison of figures 9 and 11, the  noise  power  in  the  simulated  data is much 
larger than  the  power of the  flight  data  residuals.  The  difference  in the CrambRao 
bounds  arises  directly from the  difference  in  the  noise  power. If the  simulated  data 
noise  power were  reduced to the same level  as that of the  flight  data residuals, the 
simulated  and  flight Cramdr-Rao bounds would be  the  same. Of course, the scatter 
of the  simulated  data would be much less than  that of the  flight  data. 

This  suggests  the  possibility  that  the Cram&-Rao bounds  are not too small but 
rather  that  the  scatter  in  the  flight  data is too large to represent  the  accuracy  properly. 
It might be  true,  for  instance,  that the individual estimates are  as  accurate  as 
indicated  by  the Cram6r-Rao bounds  and  that the scatter  reflects  actual  changes  in  the 
coefficients. In principle , this would explain  the  discrepancy.  However,  there is no 
physical  reason to suspect  such  large  variations  in the  aerodynamic  derivatives at 
essentially the same flight  condition.  Furthermore, no ascertainable  pattern can be 
detected  in  the  scatter  that  relates to any  flight  condition  parameter. Although only 
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a  single example is shown here, the same discrepancy is noted in  every  class of 
vehicle  tested,  including small general aviation aircraft  (ref.  24),  airliners  (ref. 261 ,  
military fighters  (ref. 273, large  supersonic  aircraft  (ref. 281, and  unconventional 
vehicles  (refs. 29 to 3 0 ) .  The  universality of the discrepancy is strong  evidence 
against  the  possibility  that  there  are  apparently random changes  in the  actual 
derivatives. 

A related  possibility is that  the  scatter  in the  estimates results from unmodeled 
errors that would not be  reflected  in the  Cram&?-Rao  bounds. An obvious example of 
such  a problem is an error in  the  measurement of the  flight  condition. For instance, 
i f  the dynamic pressure measurement were  inaccurate, the Cram&'-Rao bound  and  the 
estimates of the  dimensional derivatives would not be  affected.  The  nondimensional 
derivatives,  however, would  have larger  errors than  otherwise  predicted.  The 
occurrence of the same discrepancy with many different  aircraft  and data systems is 
strong  evidence  that  this is not  the case. Most  of the  data  systems  used are believed 
to be  accurate enough to eliminate problems of error  in the  measurement of flight 
condition . 

Thus, none of the suggestions  advanced above provides  a  satisfactory explanation 
of the discrepancy  observed  in the  flight  data. For several  years the  necessity  for 
the  fudge  factor on flight  data  was  left  essentially without explanation. It was  argued 
that modeling errors existed which invalidated  the Cram&-Rao bound. Such modeling 
errors ,  of course,  were not present  in  the simulated data. Although this  argument is 
virtually  irrefutable, i t  does little to explain  the  problem.  The  subject of what types 
of modeling error might exist  that would have such effects  was  not addressed,  This 
argument, amounting to a  dismissal of the problem, does  not  give any basis for con- 
fidence in the use of the  fudge  factor. Although some authors found the values to be 
of empirical  use when the fudge factor  was applied,  others  rejected the CrambRao 
bound as  invalid. 

This  state of affairs  has more far-reaching implications  than  the  invalidation of 
the Cramdr-Rao bound  for  use with flight  data.  The  theoretical  derivation of the 
Cram&-Rao bound  rests on the  likelihood  functional. If this theory is inadequate,  the 
theoretical  justification  for  the  use of  maximum likelihood  estimators must also  be 
questioned,  since  the  estimators  are  based on the same likelihood  functional.  Thus 
an  invalidation of the Cram6r-Rao bound might imply an invalidation of the estimates, 
leaving the analyst with nothing  theoretically  worthwhile. 

Explanation for the  Discrepancy 

In reference 31,  the authors  advanced the first  satisfactory explanation for the 
discrepancy  in the Cram&-Rao bound.  The  source of the discrepancy  was  traced to 
the  theoretical  assumptions about the independence of the  noise  samples. 

The  length of the period  before this explanation  was  advanced reveals the  need 
for  researchers to be well grounded  in both  theory  and  practice,  because  the problem 
lay  essentially  in  a  lack of  communication between the. theoreticians  and  the  prac- 
titioners.  The  theory is most naturally developed  assuming independence of the 
noise  samples,  and  the  theory  was  passed to the  practitioners  in  this  form.  Experi- 
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enced  practitioners  were  well  aware  that  residual  spectra  are seldom even  close to 
white , but  accepted  the  assumptions  as  necessary to the  theory. In fact , the  theory 
can  easily  give much information  about  the  effects of colored  noise.  The  theoreticians 
were  unaware  that  such information  was needed,  and  the  practitioners  were  unaware 
that  the information was  available. 

The exact  discrete-time  theory of estimation in  the  presence of colored  noise is 
trivial when  the spectral  shape of the  noise is known.  The  application is also  easy  in 
the  frequency domain , but  such  considerations  as  nonlinearities  and time variation 
severely limit the  application of frequency domain estimation.  The time domain 
application of the  exact  theory of estimation with colored  noise is overly cumbersome 
and  the effort involved is not justified  by  the small benefits  expected.  Furthermore , 
the  spectral  characteristics of the  noise are seldom precisely  known,  and  incorrect 
specification  can  actually make the  estimates  worse.  The estimation of the  spectral 
characteristics is possible  in  principle , but  it  adds  further  unacceptable computational 
complications.  The  theory of estimation with colored  noise  has  therefore  been  largely 
relegated to textbook examples. 

Abandon the  exact  approach , and  recognize  that  approximating  the  effects of 
colored  noise would still  provide more useful  results  than  ignoring  the  question. For 
a  first approximation , assume  that  the  noise is band limited  white with band limit B . 
Then  instead of deriving  a maximum likelihood  estimator for  this  system , analyze 
the  performance of the  estimator  based on white  noise  when the  actual  noise is 
colored  in  this  manner.  The  results of this  analysis  (ref. 32)  agree  well with intuitive 
expectations. A s  long as  the  noise  bandwidth is much larger than  the  system  band- 
width , the  effect on the  estimates is negligible.  Stated loosely , the estimation errors 
are  caused  by  the  noise  near  the  natural system frequencies;  the  estimator wi l l  always 
mistake some percentage of this  noise  as  actual system response  and  vice  versa. 
Noise far above the  system  bandwidth is readily  identified as noise  rather  than  as 
system  response. A good estimator  should  be  little  influenced  by  such  high  frequency 
noise. 

This  result is easy to generalize. It is obvious  that  the  exact  shape of the  noise 
rolloff is of little  consequence  in  the  analysis  above. If the  analysis is repeated with 
different rolloff characteristics , the same results will be obtained. In shorty the 
high  frequency  characteristics of the  noise do not materially affect the  estimates. 

This  conclusion is a welcome validation of the  practice of using  the maximum 
likelihood  estimator derived on the  basis of independent  noise  samples , even  though 
the  actual  residuals  are known to be  correlated  significantly.  The  quantitative  inter- 
pretation of high  frequency is somewhat difficult,  and  skepticism is prudent when 
the  noise  bandwidth nears  the  system  bandwidth , as often occurs. Nonetheless , this 
theory  provides  a much stronger  base than  failing to address  the  question. 

Since  the  estimates are  essentially unaffected by  high  frequency  noise,  it imme- 
diately follows that  all  functions of the  estimates are  equally  unaffected.  Thus , in 
particular , the same expression for the Cram&-Rao bound  should  still  be  valid.  This 
would seem to refute  the  hypothesis  that  the  discrepancy  in  the Cramer-Rao  bound is 
related to the  noise  spectrum;  in fact  the relationship is so elementary  that it  has 
been  overlooked. 



In stating  that  the  estimates  are  essentially  unaffected  by  high  frequency  noise, 
we are comparing  noise spectra  that  are  equal to each  other  at low frequencies.  The 
high  frequency  spectra,  and  thus  the  total  noise  power, may differ.  The low fre- 
quency  spectral  density,  rather  than  the  total  power, is the  important  statistic. How- 
ever,  all of the  programs  in  use  are  written in terms of the  total  noise  power (or, 
equivalently,  the  noise  variance).  Programs  based on the  continuous time theory 
use  the  spectral  density,  but  the  spectral  density is estimated in  practice  by  dividing 
the  discrete total  power  estimate by the  Nyquist  frequency. 

Let us  consider  the  effects of using  the  total  power  instead of the  spectral  density. 
Imagine a  system  with  total  noise  power R. If the  noise  samples  are  independent  (the 
discrete time equivalent of white noise), the  classic  analysis is valid  and  the Cram&- 
Rao bounds  should  be  correct.  The  noise power spectral  density of this  system is 
2RAt,  since  the  noise  spectrum is flat out to the  Nyquist  frequency z. NOW imagine 

a  second  system with the same total power,  but with a  one-sided  noise  bandwidth of 
B .  Figure 13 shows  the  noise  spectra of these two systems. 

1 [Band  l imited 

I 1 I 

0 
Frequency, Hz 

Figure 1 3 .  Assumed  noise  spectra. 

The Cramdr-Rao inequality  for both systems,  expressed  in  the  usual  way, is 

where V 2" does  not depend on the  noise  statistics.  Since  the total power, R , is the 
same for both systems,  the same values  are computed for Cramdr-Rao bounds.  This 
is the computation used  by  current  programs.  Expressed  in  terms of the  power  spec- 
tral  density GG",  the Cramdr-Rao inequality  should  be 
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var ( 0  2 

1 For  the first  system, 

rN 1- 1 

GG* equals  R, so this computation is the same as the 

previous  one. For the  second  system , however , - 1 
2At GG* equals R; thus 

The  Cram&?-Rao  bound computation based on the  total  power was,  therefore, too 
small by  a  factor of - 2BAt for  the  variance (or ,,/&; for  the  standard  deviation).  The 

Cram&--Rao bound computation based on the total  noise  power assumes  that  the power 
is spread evenly  over  the  Nyquist  range,  as  in the first  case.  Thus , in equation (59) ,  

B is assumed to be - 2 A t '  If this assumption is  incorrect, the  resulting computation of 

variance will be  proportionally  incorrect. 

These  results  provide an  explanation  for  the  discrepancies  previously  obseyved. 
The  noise  samples  in  the  simulated  data  were  independent;  thus , the  corresponding 
Cram&r-Rao bound computations were  valid. Modern flight  test  instrumentation is 
accurate enough that  the  largest component of the  residual  error  in  flight  data is 
from the modeling error  rather than true measurement error .  The  statistics  for so- 
called  "measurement  noise"  must include  all  such unmodeled effects.  The philo- 
sophical  question of what to include  in "measurement  noise" is not addressed  in 
detail  in  this  paper.  The  classical viewpoint on this  subject is propounded  by 
Cram& (ref. 5 )  , from  whom the following is quoted. 

It is, of course,  clear that  there is no sharp distinction  between these  various 
modes of randomness. Whether we ascribe  e .g.  the  fluctuations observed  in  the 
results of a series of shots  at  a  target mainly to small variations  in  the  initial  state 
of the  projectile, to the complicated nature of the ballistic  laws, or to the  action of 
small disturbing  factors, is largely  a matter of taste.  The  essential  thing is that, in 
all  cases  where one or more of these  circumstances are  present, an  exact  prediction 
of the results of individual  experiments becomes impossible,  and  the  irregular fluc- 
tuations  characteristic of random  experiments  will appear. 

We shall now see  that,  in  cases of this  character,  there  appears amidst  all ir- 
regularity of fluctuations  a  certain  typical form of regularity,  that will serve  as the 
basis of the mathematical theory of statistics. 

Suffice it to say  that  since  the  theory  under  discussion  contains only  the linear 
system model and  measurement noise,  anything not included  in  the  system model 
must be  considered  part of '!measurement noise".  Otherwise  the  theory  denies its 
existence;  such  solipsism seem's unwise.  The "measurement  noise" in  real flight 
test  data  therefore  tends to be  quite  colored.  Figure 14 shows  power  spectral 
density  plots of the  residuals from the  flight  test  data  used  in  figure 10. A precise 
break  point is not  obvious , but  a  value  in  the  neighborhood of 0 . 3  hertz seems reason- 



able.  The  Nyquist  frequency for this 50-sample-per-second  data is 25 hertz so 
the computed Cram&--Rao bounds  should  be  increased  by  a  factor of or about 9 .  

Increased  by  this  factor,  the  agreement between  the  Cram&-Rao bounds  and  the  scat- 
ter is quite  reasonable  considering  the  vaguely  defined  value of the  break  frequency. 
The  noise  break  frequency is close  enough to the  system  frequencies so that  the 
approximations  in  the  theory are  subject to question,  but  the  experimental  results 
hold up well. 
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Figure 1 4 .  Power  spectral  density of yaw  rate  residual f rom flight  data. 

To verify the theoretical  results  described  in  this section a new set of simulated 
data  was  created.  The  noise  for  these  data  was  created  by  passing the  pseudorandom 
independent  noise  through  a  fifth order Chebychev  filter with a  break  frequency of 
1 hertz.  This  filter  has  a  sharp  break at 1 hertz  as shown by  figure 15  which is a 

Frequency, Hz 

Figure 1 5 .  Power  spectral  density of simulated  colored  noise. 
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power  spectral  density of one of the  resulting measurement  noise signals. A typical 
time history match to these  data is shown in  figure 16. Note that  this match exhibits 
deterministic-appearing  characteristics  such  as  phase  shift  and  flattened  peaks. 
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Figure 16.  Comparison of measured  and  estimated  time  histories  for  simulated 
data with  f i l tered  noise.  

The  matches of P , p , r , and cp are more typical of flight  data  than  the  simulations 
shown  in figure 11. Accelerometers,  by  their  nature  have more high  frequency  noise 
than  such  instruments  as  rate gyros. Therefore the  flight  accelerometer  matches 
tend to be of a  character  intermediate between  that of figures 11 and 16.  The Cram&- 
Rao bounds  and  estimates of Cn and CQ from the  simulated  data with filtered  noise 

are shown in  figure 1 7 .  This  figure  shows  that the discrepancy  has  been  duplicated 
successfully with simulated  data  by  using  band-limited  noise.  The  band limit is well 
defined  for  the  simulated  data,  and when the  Cram&?-Rao  bounds  are  corrected  for  the 
colored  noise,  they  agree  excellently with the scatter. 

P P 

These  results  support  the  conclusion  that the discrepancy  in the Crambr-Rao 
bound is adequately  explained by the  presence of colored  noise. To permit  the 
Cram&-Rao bound to reflect  flight  data  scatter  accurately,  the  noise  statistics  used  in 
computing the Cramdr-Rao bound must represent the entire  residual  error,  including 
the  contribution of modeling error (which may be much larger than  the  actual instru- 
mentation error) .  For this  reason,  studies that  use  Cram&-Rao  bounds  based  solely 
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on instrumentation  characteristics  (refs. 10 to 12) are  likely  to  be  extremely  over- 
optimistic.  Colored  noise would also  be  expected to affect the  insensitivities  but 
should not directly affect the  correlations.  The  correlations  mighty  however  be 
affected by the  fact that  the  noise  contributions from modeling errors  in the  various 
signals  tend to be  correlated. 
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Figure 17.  Estimates  from  simulated  data  with coZored noise.  

Suggested Implementations 

The  previous  section  explained  the  reasons  for  the  discrepancies  observed  in the 
Cram&-Rao bounds. It remains to discuss the practical implementation of a  corrected 
computation of the  bound.  Three  approaches  are  considered  in  this  section. 

The  first  approach is to continue to use the  fudge  factors.  The  Cram&-Rao  bounds 
computed ignoring  noise  coloring  and  then  multiplied  by  a  fudge  factor of 5 to 10 have 
proved to be  useful  in  practice.  The objection to this  approach  has  been not to its 
utility,  but  rather to its ad hoc nature  and lack of theoretical  justification. Now that 
the  theory  has  provided an understanding of the  need  for  the  extra term it may be 
reasonable to use  a  value  for  this term based on past  experience  rather  than  analyti- 
cally compute one for  each  maneuver. It could be looked on as an  empirically  deter- 
mined spectral  adjustment  factor  instead of as  a  mysterious  fudge  factor.  The  factor 
has  been  observed to be  relatively  constant  over  large  classes of cases which tends 
to justify  this  approach.  The  advantages of the approach  are  simplicity  and  the fact 
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that  no  changes to current  programs  are  required.  The  disadvantage is that  the 
engineer must watch for  changes  in  the  vehicle or in  the  analysis which might 
significantly affect the  spectral  characteristics of the  residuals  and  thus  the  factor 
used. If such  changes  occur or if discrepancies  are noted it may be  necessary  to 
adjust  the  factor  used.  The  approach may be  criticized  as  arbitrary  but when 
considered  as an  aid to an  engineering  evaluation  instead of as an  absolute  value 
of accuracy  it  has  been  in  the  past and  can  continue to be  useful. - 

The  second  approach is to examine either manually or  automatically  the  actual 
spectrum of the  residuals.  The  break  frequency  can  be  evaluated or  the  spectral 
density can be  used  directly.  The  advantage of this method is that  it  provides  the 
most information.  The  spectral  characteristics of each signal can be  adjusted  sepa- 
rately  instead of using  a  single  factor  for  all of the  signals.  The  entire  spectral 
shape can be examined for  such  peculiarities  as  resonant modes.  The disadvantages 
are twofold. First  this  approach is the most complex. A Fourier  transform  routine 
must be  included  in  the  analysis  program i f  the  adjustment is to be automatic; appro- 
priate  plotting  routines wil l  als’o be  desired. It is always good practice to examine  at 
least  a few sample residual power spectral  density  plots,  but  it is simpler to create  the 
power spectral  density  plots  in  a  separate  program.  The  second  disadvantage is that 
the  value to use  for  the  spectral  density or the  break  frequency is not  usually  obvious 
from the  plot.  Figure 1 4  illustrates this problem.  The  spectrum  does not exhibit an 
obvious  flat area followed by  a well-defined break. Picking  a  specific  value from the 
plot can be  as much of an art  as  picking  a  value  for  the  spectral adjustment factor from 
experience. 

The  third  approach is a compromise between  the first two. It obtains  information 
from the  actual  residuals,  but  keeps  the programming  relatively  simple. This 
approach  uses  the  total power of the  low-pass  filtered  residuals. A simple  single-pole 
filter is used with a  break  frequency two or three times the  system natural  frequency. 
The  power of the  filtered  residuals is then  divided  by  the  filter  break  frequency to 
give  the  average  power  spectral  density at frequencies  near  and below the  system 
natural  frequencies.  This method does not provide  the complete spectral  information 
of a power spectral  density  plot,  but  it does provide  a  reasonable  estimate of the 
multiplication  factor  with very  little  work.  The  bulk of the  implementation is filtering 
the  residuals, which is done as the  residuals  are computed. 

This method is somewhat approximate  and requires  picking  a  value  for  the  filter 
break  frequency.  The obvious  approximations  involved include  the assumption that 
the  noise  spectrum is flat at  least to the  filter  break  frequency  the  choice of filter 
break  frequency,  and  the  use of a  first-order  filter. In practice,  noise  tends to be 
closely  concentrated  around  the  system  natural  frequencies.  This  violates  the  require- 
ment for  the  noise  bandwidth to be  well above the system frequencies. Because of 
these  approximations,  the method should not be  considered to give  a  precise  measure 
of the  expected  scatter;  the only claim is that  the method is an improvement on 
previous computations. Furthermore, some of the  proposals  in  the  previous  section 
although  incapable of explaining  discrepancies of a  factor of 10,  might  contribute 
measurably to smaller  discrepancies. Empirical  observation  suggests  that  a  multipli- 
cation  factor of about 2 typically  remains  necessary  because of the  approximations  in 
the  proposed  approach. 
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The method might therefore seem to be  little improvement over  the first approach 
since  the  need  for an  empirically  determined  factor  remains  (although  the  factor is 
now smaller).  The  advantage of this  approach is that  large  changes  in  the  spectral 
characteristics  are  noticed  and approximately  accounted for. If the  spectral  charac- 
teristics of all of the  maneuvers  are  similar,  this  approach  and  the  first one are equally 
valid. 

Figure 18 shows the  flight  data from figure 10 with Cram&-Rao bounds computed 
from the  filtered  residuals. A break  frequency of 0 . 5  hertz  was  used  for  the  filters. 

.0°12 r I Cram&-Rao bound 

- .0012 
7.6  8.0 8.4 8.8 9 . 2  9.6 

0, deg 

Figure 18.  Estimates  from  flight data corrected  using  filtered  residuals. 

The  correction  factors computed from the  filtered  residual power were from 3 to 6 
and  a  remaining  empirical  factor of 2 was used.  The  magnitudes of the Cram&-Rao 
bounds on this  plot  are  reasonable  and  give  a good visual  indication of estimate 
accuracy. Although this  plot shows no  outstandingly good or poor  maneuvers  there 
is a  noticeable  tendency  for  the  estimates near  the  center of the  scatter  band to have 
smaller Cram&-Rao bounds than  the outliers. It is concluded  that  this  approach 
results  in  a  useful  estimate of the  accuracy. 

EXAMPLES OF APPLICATION 

This  section  describes  the  application of the Cram&?-Rao  bounds to several  sets 
of actual  flight  data.  The examples illustrate  the  kinds of information that can  be 
deduced  with  the  aid of the  bounds. 
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Example 1 

The first example uses  the  data from figures 1 and 2 ,  which are  for a PA-30 air- 
plane  (fig. 19) .  Figure 20 duplicates  figure 1 except  that  the Cram&-Rao bounds 

Figure 19 .  Three-view  drawing of PA-30 airplane.  Dimensions  are in meters.  
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Figure 20. Estimates of Cn wi th  Cram&-Rao bounds. 
P 

45 



have  been  included.  The Cram&-Rao bounds  in  this  figure  are  multiplied  by an 
empirical  factor of 10  to  correct  for  the  effects of colored  noise.  The Cram&-Rao 
bounds  clearly  indicate which  data represent  the  best  estimates. A fairing of the 
data  can  confidently be made on the  basis of the Cram&-Rao bounds, even  though 
the  total  data  scatter is large.  Figure 2 1  shows  the same data  segregated  into  rudder 
and  aileron  maneuvers. Both the  scatter  and  the Cram&-Rao bounds show that  the 
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Figure 21.  Estimates of Cn with Cramkr-Rao  bounds,  segregated by  input used. 
P 

aileron  maneuvers  give  superior  estimates of C . The  rudder  maneuvers do not 

excite  the  airplane  well  enough  for  the  estimation of C . Some results can  be  ob- 

tained from separate  rudder and aileron  maneuvers,  but  it is apparent  that  in  order 
to obtain  the  best  estimates of all of the  stability  and  control  derivatives,  all  the ma- 
neuvers  should  include both rudder and  aileron inputs. Similar  conclusions  have 
been  reached  in  other  studies  (ref. 19) .  

n 
P 

n 
P 

An aileron  and  a rudder maneuver  at  the same flight  condition  can  also  be  ana- 
lyzed  together to give  a  single  set of estimates  that is based on the  data  in  both 
maneuvers.  Figure 22  shows  the  estimates of Cn obtained  by  this  pairing of the  data 

in  figure 2 0 .  All of the  resulting  estimates  have  small Cram&?-Rao  bounds  and small 
scatter. 
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Figure 22. Estimates of Cn with  Cramkr-Rao  bounds  from  multiple 
maneuver  analysis.  P 

Example 2 

In the  second example,  data from the remotely piloted  oblique  wing  vehicle (fig. 23)  
(ref. 30) are  used. Cross coupling  derivatives between  the  longitudinal and  lateral- 
directional modes were of interest for this nonsymmetric vehicle.  Figure 24  shows 
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Figure 2 3 .  Three-view  drawing of oblique  wing  aircraft .  
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Figure 24 .  Estimates o f  C and Cm for  oblique  wing  aircraft. 
ya r 

the  estimates of two such  derivatives, C and Cm . An empirically  determined 

spectral  adjustment  factor of 5 was used  in  the Cramdr-Rao bounds  shown.  The C y  

data show relatively  small  scatter  and  correspondingly good  Cram&-Rao bounds. 
The effect of this  derivative is easy to identify  in  the  flight  data,  and  the  derivative 
estimates  agree  well with predictions. 

' a  r 

a 

For C , on the  other  hand,  the  scatter  and  the Cram&-Rao bounds  are of about 

the same magnitude as  the  estimates.  There is very  little information  about the  value 
of Cm in  the  flight  data. With the  wing  skewed 1 5 O  to 4 5 O ,  the  data show that Cm is 

r r 
positive  and  probably somewhere  in  the range from 0 11 to 0 . 3 .  It cannot  be  deter- 
mined more precisely  than  this from the 'data available. 
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This example illustrates  the  use of the  scatter  and  the Cram&--Rao bounds  in 
combination to determine  which  derivatives can be  accurately  estimated from the  data. 
Confidence in  the  determination is improved i f  both scatter  and the Cram&-Rao bounds 
are  used. 

Example 3 

The  data for the  third example were  acquired from a remotely piloted  3/8-scale 
F-15 airplane  (fig. 2 5 ,  ref. 33). A spectral adjustment  factor of 5 was used  for  these 

0 Reference  center 
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Figure 25. Three-view  drawing of 3/8-scale F-15  remotely  piloted  research 
vehicle.  Dimensions  are  in  meters. 

data.  The  estimates of C m  are shown in  figure 2 6 .  The  behavior of the  estimates 

around an angle of attack of 25O is of particular  interest. It is difficult to justify  the 
fairing shown on the  basis of data  scatter  alone.  The  fairing  was  based  primarily on 
the  data  with small Cram&'-Rao bounds. In particular, the  data near 25" angle of 
attack  that show values of C m  near zero  have small Cram&-Rao bounds, while  the 

data  at  the same angle of attack that show C m  values of -3 and -4  have larger  bounds. 

Therefore, the fairing goes to zero  at 25O angle of attack.  The estimates of C m  in 

4 

4 

4 
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Figure 26. Estimates of C m  for  3/8-scale  model of F-15  airplane. 
q 

figure 2 7  unambiguously show a  similarly  shaped  trend  near 2 5 O  angle of attack.  Sub- 
sequent  results  have  tended to verify  the  validity of the C fairing. m 

q 

0 Flight data 

‘rn a 
per deg 

Figure 27.  Estimates of C m  for 3/8-scale  model of F-15  airplane. 
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In this example the Cram&-Rao bounds  provided more information than  the 
scatter  alone.  The  bounds  indicated  that  the  accuracy of  some data  was  goody  even 
though  the  overall  scatter  was  large  because of a few poor  estimates.  The  Cramhr- 
Rao bounds  also  indicate  that some of the  estimates above 35O angle of attack plus 
some of those'near -loo are  quite  unreliable, although  the scatter is not large. See 
example 6 for more on this  point. 

Example 4 

Figure 28  shows  estimates of Cn taken from the same 3/ 8-scale F-15 data as shown 
P 

in example 3,  using  the same spectral adjustment  factor of 5 .  The scatter above 3 5 O  
angle of attack is quite  large  as  are most of the Cram&--Rao bounds. A few data 
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Figure 28.  Estimates of Cn for  3/8-scale  model of F-15  airplane. 
P 

points with small Cram&?-Rao  bounds form the basis for the fairing  used. It is inter- 
esting  that the three  data  points  farthest from the fairing  were obtained immediately 
before  aircraft  departures.  These more negative  values of Cn may be an early 

manifestation of the  aerodynamic phenomenon that  causes the departures. 
P 

Example 5 

The fifth example uses  data from an F-11lA airplane  (fig. 2 9 ,  ref. 27) .  Figure 30 
shows  estimates of C m  for the F- lllA airplane  at 26O of wing  sweep.  The Cram&- 

a 

51 



Rao bounds  were  multiplied  by an empirically  determined  factor of 10 to correct for 
the  effects of colored  noise.  The  factor of 10 was  chosen  to make the Cram&-Rao 
bounds about the same magnitude as  the  scatter  for most of the  derivatives. However 
the  scatter  in C is much larger than  the Cram&-Rao bounds  even  after  the  use of 

the  factor.  The  data  for Mach 0 . 9  are  particularly  puzzling. Since  the same factor 
resulted  in good agreement  between  the Cramhr-Rao bounds  and the scatter  for  the 
other F-11lA derivatives,  the C estimates  deserve  careful  study. 

ma 

ma 

Figure 29. Three-view  drawing of F-11lA  airplane.  Dimensions  are in meters.  
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Figure 30. Estimates of Cm f o r  F-11lA  airplane  at 26O of wing  sweep.  
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In order to study  these  results,  the flight  data  were  replotted as  a  function of 
Mach number  (fig. 31). The  reason for the  apparent  discrepancies  was  then  evident. 
A s  shown by  the  fairing  in  figure 31, the value of Cm is significantly  less  stable 

at Mach numbers  near 0 . 8 6 .  In the  previous  figure, Mach number  distinctions  were 
made only  to the  nearest  tenth (0.7, 0 . 8 ,  and 0 . 9 ) .  The  data  near Mach 0 . 8 6  were 
all automatically rounded to  Mach 0 . 9 .  This lack of distinction  between  the C 

values  for Mach 0 . 8 6  and 0 . 9  made the Mach number  effect look like  scatter. 
Figure 32 is a duplicate of figure 30 with  the points  near Mach 0.86 segregated  and 
fairings of the  flight  data  added.  The  scatter about these  fairings is reasonable. 
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Figure 3 1 .  Estimates of C m  v e r s u s  Mach  number  for F-11lA airplane  at ,260 
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Figure 32. Estimates  of C for F - I l L A  airplane  at 26O of wing  sweep .  
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In this  example,  the Cram&-Rao bound did not  directly  indicate  the  nature of the 
problem,  but  it did draw attention to the  fact  that some  of the  data  needed more care- 
ful  analysis.  The  ensuing  study  disclosed  the  unanticipated Mach number  effect. 

Example 6 

Figure 33 shows  estimates of CI1 for  the F-11lA airplane  at 35O of wing  sweep. 
r 

A spectral  adjustment  factor of 10  was  used  as  in example 5 .  The  data  in  this  figure 
were  acquired to look for  derivative  changes  as  a  function of normal  acceleration, 
which could be  attributed to structural deformation.  The  solid  line is a  fairing of 
previous l g  flight data. 
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Figure 3 3 .  Estimates of CQ for F-11lA  airplane  at 35O o f  wing   sweep .  
r 

This  figure  has  characteristics  opposite of those  in  the  previous  example.  The 
Cram&--Rao bounds  are much larger than  the  data  scatter. In addition,  the  estimates 
are  all  close to the  fairing of the  previous  data.  This  behavior is typical of a problem 
that can  occur  when a priori  weighting (refs. 8 and 24)  is used  in  the  estimation. 

Convergence  difficulties  were  encountered during the  analysis of several of the 
elevated g maneuvers, many  of which were not  well  stabilized  in  flight  condition. 
Therefore, a priori weighting  was  used to improve convergence.  The a priori values 
are indicated  by  the  fairing  in  figure 33 .  
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A priori weighting is a  quadratic  penalty function that is added to the  cost  func- 
tional and  penalizes  the  estimator  for  departure from the a priori (starting)  values. 
The  effect of this  penalty is to hold  estimates near the a priori values  unless  there is 
significant  evidence  that  the a- priori values  are  incorrect; the level of significance 
required can be  adjusted. A priori weighting  thus  tends to eliminate large  deviations 
in  the  estimates  that are  based on minimal information.  This moderation can  improve 
convergence if the information content of a  manuever is poor. 

The Cram6r-Rao bounds  in  figure 33 indicate  that  the  maneuvers contained little 
information about the  derivative CQ . The  smallness of the  scatter is probably  due 

almost entirely to the a priori weighting  rather  than to information from the maneuvers. 
Thus, the  data  in  figure 33 do not verify  the  previous  flight  data,  a conclusion  which 
might be mistakenly drawn if the Cram6r-Rao bounds  were not considered.  Instead, 
figure 33 indicates  that  the new data do not  have  sufficient information either to con- 
tradict or to verify  the a priori values. 

r 

This example also  illustrates an important  fact  about  the computation of the 
Cram&-Rao bound  when an a priori weighting is used.  The  Cram&-Rao  bounds  are 
computed from H ,  an approximation to the  second gradient of the cost function. When 
an a priori weighting is used,  a  penalty function is added to the  cost funciton.  The H- 
matrix  used  for  the  Cram&?-Rao  bound  should  reflect  only  the  original  cost  function; 
it  should not have  a  term  added  for  the  second  gradient of the  penalty  function.  The 
Cram&-Rao bound wil l  thus  reflect the amount of information  in  the maneuver. If 
the second gradient of the  penalty  function  were  added  into  the computation of the 
bound,  as is sometimes done, the  bound would reflect  the sum of the information 
from the  maneuver  and from the a priori weighting.  There would then  be no way of 
determining how much of the information was  obtained from the maneuver,  and the 
phenomenon in  figure 33 would not be observed (the  Cram&?-Rao  bounds  in  the  figure 
would be much smaller). 

Example 7 

Figure 34 shows  the  estimates of Cn obtained from the same maneuvers 
' r  

as those  used  in example 6 .  A s  in example 6 ,  the  data  scatter is small and  agrees 
well with the fairing shown of the previous  flight  data. A priori weighting  was 
used for both examples. In this  example,  however,  the Cram&-Rao bounds  are 
small and  consistent with the scatter. It can be  concluded  that  the  maneuvers  contain 
significant information about the  derivative Cn . Therefore, the  data shown give 

positive  verification of the fairing.  This  contrasts with example 6 ,  where  it could 
only be concluded  that  the new data  did  not  contradict  the  fairing. 

' r  

55 

I .  



0 2.0 

I Crarnkr-Rao  bound 

- Fairing 

.Ool r 
n 
'r -.MI] 

per deg 
- .002 

- .003 
0 2 4 6 8 10 12 14 16 

a, de9 

Figure 3 4 .  Estimates of Cn for  F - 1 l l A  airplane at 3 5 O  of wing  sweep. 
' r  

CONCLUSIONS 

The Crambr-Rao bound is the best of the  theoretical  measures of accuracy:  it 
accounts completely for  all of the  sensitivities  and  correlations  in any number of 
dimensions.  Therefore,  the  sensitivities  and  estimated  correlations cannot provide 
additional  information  about  the  magnitude of the accuracy of an estimated coefficient. 
The  sensitivities  and  estimated  correlations can be  used to help  determine  the  cause 
of poor  accuracy,  but not to test  for  the  presence of poor  accuracy.  The  uncertainty 
ellipsoid  provides  a  statistical o r  a geometric picture of the  relationship  between  the 
Cram&--Rao bounds,  sensitivities,  and  correlations. 

The  Cram&r-Rao bound is significantly  affected  by  the  colored measurement noise 
and modeling error  present  in actual  flight data. Computations of the  bound  that 
ignore  these  effects  are often in  error  by  as much as  a  factor of 10 .  Approximate 
corrections  for  these  effects  are  easily  computed,  however,  and  result  in  reasonable 
values for the Cram6r-Rao bounds. Cram&--Rao bounds  corrected  in  this  manner 
have  proved to be extremely  useful  in  application to real flight  data. 

Modeling error must be  considered to be  a component of noise.  Theoretical 
studies  based only on instrumentation  noise  characteristics  produce  results that are 
overoptimistic. 

It is usually  impractical to use  the  bias  as  a  quantitative  theoretical  measure of 
estimate  accuracy.  The  possibility of biases  should  be  considered  by  the  engineer 
during any  evaluation of estimates. 
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The  scatter of the  estimates is a  useful  empirical measurement  that  should  always 
be examined if  sufficient  data are available  for its definition. A comparison of the 
scatter  and  the Cram&r-Rao bounds  provides  a good check of empirical  and  theoret- 
ical  measures. 

Engineering judgment remains  the  cornerstone of gaging the accuracy of the 
estimates.  The  empirical  and  theoretical  measures  should  all  be taken as tools to aid 
an  engineer's judgment rather than as absolute  incontrovertible  values. To arrive 
at  the  final  best estimate of accuracy , the engineer must use  his judgment to combine 
the information from all of the  available  tools. He must evaluate  the  applicability of 
the tools and  consider the factors  such  as modeling error that  were  ignored  in  their 
development. 

National  Aeronautics  and  Space  Administration 
Dryden Flight  Research  Center 

Edwards , Calif. , September 23 ,  1980 
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